Why I did not blog for two years

It's 2020 and I realized I haven't written a blog entry for a full two years since the end of 2017. It's not like I don't want to write. On the contrary, I do want to write, which is why I started the blog. I think it is cool to write and I have good ideas that some people and I will find interesting. So I figured I should break the silence this year by why I should write more often by writing about why I didn't write and what I am going to do about it.

The first reason I didn't write is that I feared that my writing will be judged by others. I would think about an interesting topic, lay out the essay in my head, then proceed to criticize it. Thinking too much about WWHNRS-What Would HackerNews Readers Say. Of course, by not writing anything at all, I don't get to find out what people would have said and worst of all, remain unhappy since I wanted to write and get better at it. I realized I have the same pattern with music. I like music and the thought of making new music but as soon as I try making something, I think to my self, this is cheesy, not good enough and so on.

Second, rather than writing something and edit it after, I try to perfect the sentence I am writing. This really hurt me at work last year because I had to write a lot (Amazon is famous for its writing culture). The primary reason for me to write at work was to convey my ideas in an understandable way. Impressing others was perhaps the least important thing to do in that context. Instead, I found myself stuck writing a single paragraph for an hour. It was tiring and was definitely not fun. Most importantly, it did not help me achieve my goal: conveying my ideas to others. In the end, I had to spend extra time trying to rush the rest of the document.

Here's a strange analogy: writing is like vacuuming my home. Hard to get started, but once I start the process, it's fun and it feels good when it's done.

What am I going to do about it? I'll write more this year, at least once every month. Well, that's a bit tautological. More specifically, I will write smaller posts like this one. Many of my past posts have been incredibly long, which are hard to write and even harder to read. I'll be more charitable to myself. It's okay to write something possibly wrong, or just completely wrong, it's not the end of the world. After all, it's not like what's in my head is always right or consistent for that matter.

Stay tuned.

Catergorized under: uncategorized

Published: 2020-01-21T03:26:59.293514
Last modified: 2020-01-21T03:26:59.293514

Raspberry Pi thermostat - Python Controller

This is a continuation of the Raspberry Pi thermostat series. The hardware part can be found here.


With the hardware built, now we need software to control the thermostat.

I decided to use Python for its simplicity. At first, I put up a simple website where I can control the thermostat using my phone. Soon, I realized it's actually easy to integrate with Apple Home via Homebridge so I implemented the interfaces required to get that working as well. Doing that let me do things like "hey siri, set the thermostat to 26 degrees".

The following is the overview of the solution:

The code is here, but it has lots of features that are not necessarily used today.

Python Server


  • RPi.GPIO for controlling GPIO pins. This comes with the Raspbian OS already.
  • Flask to put up a simple HTTP interface for homebridge.
  • DHT11 for interfacing with DHT11 sensor.
  • Adafruit_Python_CharLCD to control the 1602 display.


The server just spins up a bunch of servers (implemented as threads) that polls sensors and carry out actions. Whether Python performs well with multi-threading is irrelevant here since the CPU is mostly idle.

There are 5 parts: pconfig, display, temphumids, oracle, and server.

pconfig - for persistent configuration

Since Raspberry Pi can lose power or need to restart for updates, you need to save the configuration on the main disk.

The code is dead-simplee. It just reads from and writes to a JSON file every time you ask. Because the call volume is so low, there is no performance impact to worry about.

Stuff that is saved: * Target temperature day & night - I find that I always want the temperature to be 2 degrees C higher than during the day, so I have a separate profile for that. * Target humidity * Current Governor (see below)

temphumids - temperature & humidity sensor

temphumids records the temperature & humidity every second.

You can also query for the latest sampled temperature & humidity. In reality, I take an average of all the samples collected in the last 30 seconds because DHT11 measurements fluctuate a bit.

display - displays two lines

Display literally accepts two lines to display and just forwards it to the LCD.

oracle - tells controller what to do based on your preference

What the oracle does is simply to run what I call a 'governor' periodically (30s) carry out actions. Definitely not the best design but the program is small enough that it does not really matter much.

I have three governors: off, cool and heat.

GovernorWhat they do
off This governor just leaves everything off.
cool This governor makes sure that your home is cool and dry. The interesting thing I learned is that leaving the fan ON makes your home very humid even with the cooling coil on. Apparently the reason is that if the fan is on, the water has no chance to condense on the coil.

  • If the temperature is greater than or equal to the desired temperature, turn on the coil & the fan.
  • If the temperature is fine but the humidity is high, turn the cooling coil on but turn the fan off. This makes sure that the water condenses on the coil itself.
  • Otherwise leave everything off.
heat This is pretty simple, it just turns heat on whenever it's cold. It doesn't really care about humidity because there is nothing you can do in winter to improve the situation.

server - interface for homebridge-thermostat

Homebridge is an open-source NodeJS server that interfaces with Apple Home via HomeKit API.

Using the homebridge plugin homebridge-thermostat, you can just provide the HTTP interface for the thermostat and let your iOS devices control your thermostat. The plugin is poorly documented but I was able to read the source code to find out what APIs you need to implement.

Interfaces you have to implement: * /status return the governor, temperature and humidity information * /targetTemperature/t - set the target temperature * /targetRelativeHumidity/rh - set the target humidity * /off - set governor to off * /comfort - set govenor to heat * /no-frost - set governor to cool

Make the server run on boot

Of course, we want this service to be running all the time. The best way to achieve this is to make it into a systemd service. Making a simple systemd service is very easy. First, write a service definition file like this:

Description=Raspberry Pi Theromostat

ExecStart=/bin/bash -c "FLASK_APP=rpithermostat.server ./venv/bin/flask run --with-threads -h"


This works great because all the standard out and error just gets redirected to syslog, which is what you want normally anyway.

To install this, just copy the file into /etc/systemd/system/. Then run systemd enable servicename to make it run when booted up. Run systemd start servicename to start the service right away.

Other caveats

The homebridge would randomly stop working. I never bothered to figure out why, but I "solved" the issue by just creating a cron job that restarts every hour (0 * * * * systemctl reboot). It has been working well for many months now without any issues.

Future Improvements

I could improve the heat governor by making it control the power outlet attached to a humidifer in winter. That way I can make the humidity just right.

Catergorized under: programming / rpi

Published: 2017-12-07T23:52:50.529279
Last modified: 2017-12-07T23:41:20.181159

Raspberry Pi thermostat - Building the hardware

This blog is about building my own thermostat with Raspberry Pi. This is part 1 where I explain the hardware. Part 2 talks about how I build the software that controls it.

What did I not like about the mercury thermostat?

I didn't like my old mercury-based thermostat for a couple reasons. First, the temperature fluctuation was pretty significant, up to 3 degrees C because mercury takes a while to react to the temperature change, Also I didn't like having to go to the living room to adjust the thermostat all the time.

Why did I not just use Ecobee or Nest? This was for fun & to learn how to build basic electronics using RPi ;)


The interface to the HVAC is a simple single stage 4-wire control.

  • heat resistive heat strips - white - not used
  • fan - green
  • cooling heat pump - orange
  • power - red

Thank you /u/Nephilimi for the correction.

Basically, you just need to connect the power wire to what you want to turn on.

Connecting power to heat or cooling will heat/cool your coil.

Since I live in an apartment equipped with a heat pump, connecting power to heat pump will cool in summer and heat in winter.

Then you also need to run the fan for the air to circulate.

Parts needed

  • Raspberry Pi - it can be any model really, but you want wifi for remote control.
  • You need 3v, 5v, GND, and 4 GPIO pins minimum. 7 more for a 1602 display.
  • Soldering equipments (example)
  • Lots (10~20) of female to male jumper cables (example)
  • Wires - I just used a 22 gauge wire
  • Prototyping board (example)
  • 3 x 2.2k and 3 x 10k Resistors
  • 3 x 2n2222 NPN transistors
  • DHT11 digital temperature & humidity sensor
  • Minimum 3 channel relay (this is what I used)
  • A 1602 display, if you want to display status also. It's named 1602 because it displays 2 rows of 16 characters.


Here's the schematic for the core parts:

Solid lines denote where I had to use a wire. Dotted lines denote where I didn't have to use a separate wire thanks to either the board or existing wires.


P1 ~ P4 denote any free GPIO pins.

  • 3.3v to power DHT11.
  • 5v to power the relay.
  • P1 communicates with DHT11 (both read/write).
  • P2~P4 controls the three relay outputs.

Communicating with DHT11

DHT11 needs only one data pin because it both handles input and output through the same pin.

Controlling the relay

This was the only non-straightforward part that required a bit of thinking. When the relay is powered, the switches are simply disconnected. In order to 'close' (or, connect) the switch, you need to drain the current from the relay pins.

This is where the NPN transistor helps. It has 3 parts: base (B), current (C) and emitter (E). Electricity flows from C to E, only if voltage is applied on B.

In this case, C accepts current from the relay, but it doesn't let it go through E unless B has voltage. And we control the voltage by setting the line high from the Rpi.

So in my circuit, asserting P1 high connects power to heat. P2 and P3 controls fan and cooling respectively.

Finished hardware

Here's a ghetto looking finished thermostat in action:

Due to my lack of any real hardware skills, I could not put together in a more polished way.

What's next?

Check out the part 2 for the software that runs this thermostat.

Catergorized under: programming / rpi

Published: 2017-12-07T23:52:21.472089
Last modified: 2017-12-08T04:03:31.442941

tmux.conf with clipboard integration & extra features

I have been using the terminal multiplexer tmux for almost two years now, but I never used its mouse support. The big reason was that it messed up the native terminal copy-paste support.

I spent some time reading the tmux(1) man page, and finally got something working that's comparable to gui terminal emulators like gnome-terminal.

Nice things I added here:

  • Copy mode selection with keyboard/mouse will copy into the clipboard, rather than just the tmux buffer.
  • Right click to paste from the clipboard.
  • Middle click on the window label to close a window.
  • Double click on any window label to open a new window.
  • Drag to re-order windows.

For those who are not familiar with tmux terminology, a tmux "window" is comparable to a browser "tab".

Here's the relevant tmux.conf parts annotated (my actual tmux.conf is here):

# Enable mouse support.
set -g mouse on
# Middle click on the window label to kill it
# "=" is apparently a macro for the "selected window number" but only for 
# a certain set of commands.
bind-key -n MouseUp2Status kill-window -t=
# Drag to re-order windows
bind-key -n MouseDrag1Status swap-window -t=
# Double click on the window list to open a new window
bind-key -n DoubleClick1Status new-window

## Clipboard integration (only applicable when you have an X server running)

# Selection with mouse should copy to clipboard right away, in addition to the default action.
# Unbind the default action first.
unbind -n -Tcopy-mode-vi MouseDragEnd1Pane
bind -Tcopy-mode-vi MouseDragEnd1Pane send -X copy-selection-and-cancel\; run "tmux save-buffer - | xclip -i -sel clipboard > /dev/null"
# Copy mode copy should also copy it to the clipboard as well.
unbind -Tcopy-mode-vi Enter
bind -Tcopy-mode-vi Enter send -X copy-selection-and-cancel\; run "tmux save-buffer - | xclip -i -sel clipboard > /dev/null"
# Right click to paste from the clipboard
# If you like middle click better, change MouseDown3Pane to MouseDown2Pane for middle click.
unbind-key MouseDown3Pane
bind-key -n MouseDown3Pane run "tmux set-buffer \"$(xclip -o -sel clipboard)\"; tmux paste-buffer"

A few interesting things to note:

  • The equals sign (=) in kill-window is a macro for the selected window number. But, it only works with specific commands, in an unescaped form. You can't do confirm-before "kill-window -t=". Don't waste your time trying to get it working.
  • You must redirect xclip output into /dev/null, or tmux will hang (Relevant SO link).
  • Also, If you are not using the vi key binding, all the un/binds with copy-mode-vi in it, needs to be replaced with copy-mode and their respective key binding. The default tmux key binding is actually hard-coded in their source code.
  • Notably, this seems to work pretty well on the latest release of Windows 10 Bash on Ubuntu on Windows / WSL (Wow, what a mouthful name!). Just run an X server like Xming and your clipboard will integrate with the Windows clipboard. Now I can use tmux full-time on Windows.

What can be improved:

  • Disable the clipboard integration if X is not available. Since I always work with X, I didn't think this was useful.
  • It does not select a word like on double click.
  • Right after selection, it exits the copy-mode. It's kind of jarring.

Screenshot (well.. it doesn't look any different with mouse support)

Catergorized under: techtips / tmux

Published: 2017-04-16T02:45:40.881650
Last modified: 2017-04-16T03:57:18.963295

San Francisco Trip Part 2 - MOAH

Part 1 is here.

We dropped by a small house museum called the Museum of American Heritage (MOAH) on the way to Stanford University. I wasn't sure what to expect but it turned out pretty good. A pinball exhibition was ongoing when we were there so that was fun to play with. And there were many interesting old gadgets. A volunteer named Jim was guiding us throughout the visit.

An old can of Ghirardelli chocolate. So now you know how to read "gear-ar-delly"!

Ever wondered why pinball is named so? Well, when they first made it, it was literally a bunch of pins and a ball, no flappers or anything else. Hence the name "pinball". The earlier machines didn't require too much skill.

Here's a good old pin-ball machine. You can play a game of poker with this machine with this particular variant.

The sticker says

  • two pair - 1 free game
  • 3 of a kind - 2 free games
  • straight - 3 free games
  • full house - 5 free games
  • four of a kind - 15 free games
This is the most advanced mechanical pinball machine before electric components were introduced. When a ball reaches the "out" hole, all the balls in the middle gets flushed, and the out counter goes up. When the out counter reaches 3, it flushes all balls in the field.

When a ball makes it to the "hit" section, the entire plate rotates. Unlike all other mechanical pinball machines, this one was actually pretty fun to play.

This is an electrical pinball machine. It features bright lights and electrically operated bumpers that bounces the ball around. The bumpers make a nice "cha-ching" when a ball hits them.
This is the backglass art of the same pinball machine above.

Jim the volunteer told us is that quite a few pinball machines had nice backglass arts that expressed many progressive social ideas for the time, like female astronauts. Supposedly, those backglasses are more valuable than the pinball machines themselves.

The Intertype typesetting machine blew my mind. According to Jim the volunteer, arranging the physical types for a page of newspaper used to take a full week. Naturally, newspapers used to be published only weekly.

The Intertype machine made typesetting dramatically faster. At the backside of the machine, there is a cylinder of molten lead. As you type on the machine, the moulds for the letters you type fall into the tray in front of you. Then as you "flush" the current line, the molten lead is cast into types that you can use to publish newspapers faster than ever.

This machine helped the invention of daily newspapers. The machine was very expensive so people came up with various ways to keep it busy 24/7. One such way was to typeset a national newspaper earlier in the day, then to typeset a local newspaper later in the day (*I think this is kind of similar to how earlier computers were all time-sharing systems; Computers were very expensive and valuable back then*).

Unfortunately, I didn't really get to see it running live. They stopped running it live after many parents expressed concerns about their kids (at the museum) being exposed to lead fumes and all.

Catergorized under: uncategorized

Published: 2016-09-04T16:01:11.924575
Last modified: 2016-09-04T16:01:11.924691